OVERVIEW: THE ABIOTIC FACTORS ‘STRESS AND LIGHTING’ HAVE AN INFLUENCE ON THE BIOACTIVE COMPOUND FLAVONOID IN STRAWBERRY PLANT
Abstract
The increasing demand for strawberries is driving advancements in technology that support strawberry production, which is expected to become far more effective and efficient. Strawberries are one of the plants whose fruits contain substances that are highly beneficial for human health. Abiotic factors such as stress and light often play a decisive role in the production of secondary metabolites like flavonoids, which are important compounds in strawberry plants. This article aims to provide information related to the impact of abiotic factors ‘stress and lighting” that can affect these compounds. The studies used to support the information in this article include reputable scientific journals published and indexed in ScienceDirect, Springer, articles indexed in Scopus, and relevant literature on GoogleScholar. All literature providing insights on the importance of biological activity and plant physiology, secondary metabolites, flavonoid biosynthesis, and the phytochemistry of plants. The influence of abiotic stress and lighting on plants can affect various aspects of plant growth, which will eventually impact the response in terms of quality produced and also the compounds contained within the plant itself. Based on the study of abiotic factors such as stress and lighting, these have a crucial role in the biosynthesis of flavonoid compounds that affect production in strawberry plants.
References
Amoah, J. N., Ko, C. S., Yoon, J. S., & Weon, S. Y. (2019). Effect of drought acclimation on oxidative stress and transcript expression in wheat (Triticum aestivum L.). Journal of Plant Interactions, 14(1), 492–505. https://doi.org/10.1080/17429145.2019.1662098
Angin, M., Volant, S., Passaes, C., Lecuroux, C., Monceaux, V., Dillies, M. A., Valle-Casuso, J. C., Pancino, G., Vaslin, B., Le Grand, R., Weiss, L., Goujard, C., Meyer, L., Boufassa, F., Müller-Trutwin, M., Lambotte, O., & Sáez-Cirión, A. (2019). Metabolic plasticity of HIV-specific CD8+ T cells is associated with enhanced antiviral potential and natural control of HIV-1 infection. Nature Metabolism, 1(7), 704–716. https://doi.org/10.1038/s42255-019-0081-4
Badmus, J. A., Ekpo, O. E., Rautenbach, F., Marnewick, J. L., Hussein, A. A., & Hiss, D. C. (2016). Isolation and antioxidant activity of flavonoids from Holarrhena floribunda (G.don) leaves. Acta Biochimica Polonica, 63(2), 353–358. https://doi.org/10.18388/abp.2015_1178
Beckles, D. M., & Roessner, U. (2012). Plant metabolomics: Applications and opportunities for agricultural biotechnology. In Plant Biotechnology and Agriculture: Prospects for the 21st Century (pp. 67–81). https://doi.org/10.1016/B978-0-12-381466-1.00005-5
Biesalski, H. K., Dragsted, L. O., Elmadfa, I., Grossklaus, R., Müller, M., Schrenk, D., Walter, P., & Weber, P. (2009). Bioactive compounds: Definition and assessment of activity. Nutrition, 25(11–12), 1202–1205. https://doi.org/10.1016/j.nut.2009.04.023
Chaichana, C., Chantrasri, P., Wongsila, S., Wicharuck, S., & Fongsamootr, T. (2020). Heat load due to LED lighting of in-door strawberry plantation. Energy Reports, 6, 368–373. https://doi.org/10.1016/j.egyr.2019.11.089
Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: Recent advances on their biosynthesis, genetics, andecophysiology. Plant Physiology and Biochemistry, 72, 1–20. https://doi.org/10.1016/j.plaphy.2013.05.009
Çirak, C., Radusiene, J., Ivanauskas, L., Jakstas, V., & Çamaş, N. (2014). Phenological changes in the chemical content of wild and greenhouse-grown Hypericum pruinatum: Flavonoids. Turkish Journal of Agriculture and Forestry, 38(3), 362–370. https://doi.org/10.3906/tar-1308-17
Díaz, P., Monza, J., & Márquez, A. (2005). Drought and Saline Stress. In A.J. Márquez (Ed.), Lotus japonicus Handbook (Issue 1.3, pp. 39–40). Springer Netherlands. https://doi.org/https://doi.org/10.1007/1-4020-3735-X_3
Durazzo, A., Lucarini, M., Souto, E. B., Cicala, C., Caiazzo, E., Izzo, A. A., Novellino, E., & Santini, A. (2019). Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytotherapy Research, 33(9), 2221–2243. https://doi.org/10.1002/ptr.6419
Gavilán, P., Ruiz, N., & Lozano, D. (2015). Daily forecasting of reference and strawberry crop evapotranspiration in greenhouses in a Mediterranean climate based on solar radiation estimates. Agricultural Water Management, 159, 307–317. https://doi.org/10.1016/j.agwat.2015.06.012
Gouot, J. C., Smith, J. P., Holzapfel, B. P., & Barril, C. (2019). Grape berry flavonoid responses to high bunch temperatures post véraison: Effect of intensity and duration of exposure. Molecules, 24(23), 2–24. https://doi.org/10.3390/molecules24234341
Goyal, S., Lambert, C., S. Cluzet, J. M. M., & Ramawat, K. G. (2012). Plant defence: Biological control. In Plant Defence: Biological Control (Issue June 2014). https://doi.org/10.1007/978-94-007-1933-0
Guimarães-Dias, F., Neves-Borges, A. C., Viana, A. A. B., Mesquita, R. O., Romano, E., de Fátima Grossi-de-Sá, M., Nepomuceno, A. L., Loureiro, M. E., & Alves-Ferreira, M. (2012). Expression analysis in response to drought stress in soybean: Shedding light on the regulation of metabolic pathway genes. Genetics and Molecular Biology, 35(SUPPL.1), 222–232. https://doi.org/10.1590/S1415-47572012000200004
Gupta, A., Sheth, N. R., Pandey, S., Yadav, J. S., & Joshi, S. V. (2015). Screening of flavonoids rich fractions of three Indian medicinal plants used for the management of liver diseases. Revista Brasileira de Farmacognosia, 25(5), 485–490. https://doi.org/10.1016/j.bjp.2015.06.010
Han, S. A., Xie, H., Wang, M., Zhang, J. G., Xu, Y. H., Zhu, X. H., Caikasimu, A., Zhou, X. W., Mai, S. Le, Pan, M. Q., & Zhang, W. (2023). Transcriptome and metabolome reveal the effects of three canopy types on the flavonoids and phenolic acids in ‘Merlot’ (Vitis vinifera L.) berry pericarp. Food Research International, 163(August 2022), 112196. https://doi.org/10.1016/j.foodres.2022.112196
Hernández-Martínez, N. R., Blanchard, C., Wells, D., & Salazar-Gutiérrez, M. R. (2023). Current state and future perspectives of commercial strawberry production: A review. Scientia Horticulturae, 312(October 2022). https://doi.org/10.1016/j.scienta.2023.111893
Hidaka, K., Dan, K., Imamura, H., Miyoshi, Y., Takayama, T., Sameshima, K., Okimura, M., & Kitano, M. (2013). Investigation of supplemental lighting with different light source for high yield of strawberry. In IFAC Proceedings Volumes (IFAC-PapersOnline) (Vol. 1, Issue PART 1). IFAC. https://doi.org/10.3182/20130327-3-jp-3017.00028
Hussain, T., Koyro, H. W., Zhang, W., Liu, X., Gul, B., & Liu, X. (2020). Low Salinity Improves Photosynthetic Performance in Panicum antidotale Under Drought Stress. Frontiers in Plant Science, 11(May), 1–13. https://doi.org/10.3389/fpls.2020.00481
Kevin S. Gould, & Lister, C. (2005). Chemistry, Biochemistry and Applications. In Ø. M. Andersen & K. R. Markham (Eds.), Flavonoids : chemistry, biochemistry, and applications (pp. 397–425). CRC Press. http://www.crcpress.com
Kramer, P. (1983). Water Relations of Plants. Academic Press, Inc. http://www.sciencedirect.com/science/book/9780124250406
Kramer, P., & Boyer, J. (1995). Water Relations of Plants and Soils (1st ed.). Academic Press.
Li, B., Fan, R., Sun, G., Sun, T., Fan, Y., Bai, S., Guo, S., Huang, S., Liu, J., Zhang, H., Wang, P., Zhu, X., & Song, C. peng. (2021). Flavonoids improve drought tolerance of maize seedlings by regulating the homeostasis of reactive oxygen species. Plant and Soil, 461(1–2), 389–405. https://doi.org/10.1007/s11104-020-04814-8
Mahmud, S., Zaman, Q. U., Esau, T. J., Price, G. W., & Prithiviraj, B. (2019). Development of an artificial cloud lighting condition system using machine vision for strawberry powdery mildew disease detection. Computers and Electronics in Agriculture, 158(December 2018), 219–225. https://doi.org/10.1016/j.compag.2019.02.007
Martinsson, M., Kwast, A., Cieslinski, G., & Treder, W. (2006). Impact of Production Systems and Fertilizer Application on Yield and Quality of Strawberries. Acta Horticulturae, 708, 59–64. https://doi.org/10.17660/ActaHortic.2006.708.4
Miao, L., Zhang, Y., Yang, X., Xiao, J., Zhang, H., Zhang, Z., Wang, Y., & Jiang, G. (2016). Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria × ananassa) fruit. Food Chemistry, 207, 93–100. https://doi.org/10.1016/j.foodchem.2016.02.077
Michel, T. (2011). Nouvelles méthodologies d’extraction, de fractionnement et d’identification : application aux molécules bioactives de l’argousier (Hippophae rhamnoides). Thése [Universit´e d’Orl´eans]. https://theses.hal.science/tel-00677211
Middleton, E. (1998). Effect of plant flavonoids on immune and inflammatory cell function. Advances in Experimental Medicine and Biology, 439, 175–182. https://doi.org/10.1007/978-1-4615-5335-9_13
Moriguchi, T., Kita, M., Tomono, Y., Endo-Inagaki, T., & Omura, M. (2001). Gene expression in flavonoid biosynthesis: Correlation with flavonoid accumulation in developing citrus fruit. Physiologia Plantarum, 111(1), 66–74. https://doi.org/10.1034/j.1399-3054.2001.1110109.x
Nakabayashi, R., Yonekura-Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T., Matsuda, F., Kojima, M., Sakakibara, H., Shinozaki, K., Michael, A. J., Tohge, T., Yamazaki, M., & Saito, K. (2014). Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant Journal, 77(3), 367–379. https://doi.org/10.1111/tpj.12388
Pydipati, R., Burks, T. F., & Lee, W. S. (2006). Identification of citrus disease using color texture features and discriminant analysis. Computers and Electronics in Agriculture, 52(1–2), 49–59. https://doi.org/10.1016/j.compag.2006.01.004
Rispail, N., Nash, R., & Webb, K. J. (2005). Lotus japonicus Handbook. In A. J. Márquez (Ed.), Lotus japonicus Handbook. Springer Netherlands. https://doi.org/10.1007/1-4020-3735-X
Saija, A., Scalese, M., Lanza, M., Marzullo, D., Bonina, F., & Castelli, F. (1995). Flavonoids as antioxidant agents: Importance of their interaction with biomembranes. Free Radical Biology and Medicine, 19(4), 481–486. https://doi.org/10.1016/0891-5849(94)00240-K
Singh, G., Kachwaya, D. S., Kumar, R., Vikas, G., & Singh, L. (2018). Genetic variability and association analysis in strawberry (Fragaria x ananassa Duch). Electronic Journal of Plant Breeding, 9(1), 169–182. https://doi.org/10.5958/0975-928X.2018.00021.2
Sompila, A. W. G. T., Mabika, A. B. M., Pambou-Tobi, N. P. G., Gouollaly, T., Moussounga, J. E., N’simba, G. L. L. B., Nguie, R., & Matos, L. (2021). Evaluation of Some Secondary Metabolites and Determination of the Antioxidant Potential of Different Extracts from the Plant of <i>Pteridium aquilinum</i> American Journal of Analytical Chemistry, 12(12), 506–519. https://doi.org/10.4236/ajac.2021.1212032
Song, J., Du, L., Li, L., Kalt, W., Palmer, L. C., Fillmore, S., Zhang, Y., Zhang, Z. Q., & Li, X. H. (2015). Quantitative changes in proteins responsible for flavonoid and anthocyanin biosynthesis in strawberry fruit at different ripening stages: A targeted quantitative proteomic investigation employing multiple reaction monitoring. Journal of Proteomics, 122, 1–10. https://doi.org/10.1016/j.jprot.2015.03.017
Sun, J., Qiu, C., Ding, Y., Wang, Y., Sun, L., Sun, L., Fan, K., Gai, Z., Dong, G., Wang, J., Li, X., Song, L., & Ding, Z. (2020). Fulvic acid ameliorates drought stress-induced damage in tea plants by regulating the ascorbate metabolism and flavonoids biosynthesis. BMC Genomics, 21(1), 1–13. https://doi.org/10.1186/s12864-020-06815-4
Teoh, E. S. (2016). Secondary Metabolites of Plants. In Medicinal Orchids of Asia: Vol. Chapter 5 (pp. 1–752). https://doi.org/10.1007/978-3-319-24274-3
Verma, A., & Deepti, S. (2016). Abiotic Stress and Crop Improvement: Current Scenario. Advances in Plants & Agriculture Research, 4(4), 345–346. https://doi.org/10.15406/apar.2016.04.00149
Wai, T. S., Chaichana, C., & Maruyama, N. (2023). Energy cost analysis of growing strawberries in a controlled environment chamber. Energy Reports, 9, 677–687. https://doi.org/10.1016/j.egyr.2022.11.045
Wang, L., Luo, Z., Yang, M., Liang, Z., Qi, M., Dong, Y., Xu, Y., Lin, X., & Li, L. (2022). The action of RED light: Specific elevation of pelargonidin-based anthocyanin through ABA-related pathway in strawberry. Postharvest Biology and Technology, 186(January), 1–8. https://doi.org/10.1016/j.postharvbio.2022.111835
Wang, P., Zhang, L., Jiang, X., Dai, X., Xu, L., Li, T., Xing, D., Li, Y., Li, M., Gao, L., & Xia, T. (2018). Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis. Planta, 247(1), 139–154. https://doi.org/10.1007/s00425-017-2771-z
Wang, T., Zou, Q., Guo, Q., Yang, F., Wu, L., & Zhang, W. (2019). Widely Targeted Metabolomics Analysis Reveals the Effect of Flooding Stress on the Synthesis of Flavonoids in Chrysanthemum morifolium. Molecules, 24(20), 2–11. https://doi.org/10.3390/molecules24203695
Woo, H. H., Kuleck, G., Hirsch, A. M., & Hawes, M. C. (2002). Flavonoids: Signal molecules in plant development. Advances in Experimental Medicine and Biology, 505, 51–60. https://doi.org/10.1007/978-1-4757-5235-9_5
Xu, X., Zhang, Y., Li, Y., Liao, S., Sun, Y., & Liu, F. (2023). Supplemental light and silicon improved strawberry fruit size and sugars concentration under both full and deficit irrigation. Scientia Horticulturae, 313(December 2022), 111912. https://doi.org/10.1016/j.scienta.2023.111912
Yin, C., Peng, Y., Zang, R., Zhu, Y., & Li, C. (2005). Adaptive responses of Populus kangdingensis to drought stress. Physiologia Plantarum, 123(4), 445–451. https://doi.org/10.1111/j.1399-3054.2005.00477.x
Zhou, X., Ampatzidis, Y., Lee, W. S., Zhou, C., Agehara, S., & Schueller, J. K. (2022). Deep learning-based postharvest strawberry bruise detection under UV and incandescent light. Computers and Electronics in Agriculture, 202(July), 107389. https://doi.org/10.1016/j.compag.2022.107389